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Budding from the plasma membrane of the host cell is an indispensable step in the life cycle of the human
immunodeficiency virus �HIV�, which belongs to a large family of enveloped RNA viruses, retroviruses.
Unlike regular enveloped viruses, retrovirus budding happens concurrently with the self-assembly of the main
retrovirus protein subunits �called Gag protein after the name of the genetic material that codes for this protein:
Group-specific AntiGen� into spherical virus capsids on the cell membrane. Led by this unique budding and
assembly mechanism, we study the free energy profile of retrovirus budding, taking into account the Gag-Gag
attraction energy and the membrane elastic energy. We find that if the Gag-Gag attraction is strong, budding
always proceeds to completion. During early stage of budding, the zenith angle of partial budded capsids, �,
increases with time as �� t1/2. However, if the Gag-Gag attraction is weak, a metastable state of partial
budding appears. The zenith angle of these partially spherical capsids is given by �0���2 /���1/4 in a linear
approximation, where � and � are the bending modulus and the surface tension of the membrane, and � is a
line tension of the capsid proportional to the strength of Gag-Gag attraction. Numerically, we find �0�0.3�

without any approximations. Using experimental parameters, we show that HIV budding and assembly always
proceed to completion in normal biological conditions. On the other hand, by changing Gag-Gag interaction
strength or membrane rigidity, it is relatively easy to tune it back and forth between complete budding and
partial budding. Our model agrees reasonably well with experiments observing partial budding of retroviruses
including HIV.
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I. INTRODUCTION

The human immunodeficiency virus �HIV� is famous for
its ability to induce acquired immunodeficiency syndrome
�AIDS�. It belongs to a large family of enveloped RNA vi-
ruses, retroviruses. Retroviruses are characterized by the
unique infection strategy of reverse transcription, in which
the genetic information flows from RNA back to DNA
�therefore the name “retro”� �1�. Budding is an indispensable
step in the retroviral life cycle �2,3�. After the major retrovi-
ral structural protein, Gags �originally mean group-specific
AntiGens�, are synthesized inside the host cell, they are
transported to the cell membrane and self-assemble into
spherical protein shells called “capsids,” with viral RNA ge-
nome and other auxiliary viral proteins packaged inside. At
the same time, these capsids, enveloped by the cellular mem-
brane, must bud out of the membrane to target other host
cells. In other words, budding and assembly of retroviruses
happen concurrently on the cell membrane. Despite a large
body of experiments done within the last decade, the biologi-
cal pathway and mechanism of retroviral budding have still
not been fully understood �2,3�. One important unexplained
observation is that viral budding can be inhibited partially or
completely by modifying the Gag proteins or changing the
cell environment. In these situations, capsids are only par-
tially formed and stuck on the membrane �Fig. 1�. Motivated
directly by this partial budding phenomenon, in this paper,
we propose a physical model to study HIV �and retroviruses
in general� budding and assembly on the elastic membrane.
Physically, this problem is interesting because it provides a
unique two-dimensional self-assembly mechanism in which
the membrane elastic energy plays an important role, since

assembly is always accompanied with budding. Biologically,
understanding the physical mechanism of HIV budding and
assembly is certainly important toward understanding the
HIV life cycle. It is even more important in the light of
recent effort from the virology community to develop assem-
bly oriented antiviral therapy.

Budding of regular enveloped viruses was studied theo-
retically by Tzlil, Deserno, Gelbart, and Ben-Shaul �TDGB�
in Ref. �5� �see also �6,7��. However, the viral budding path-
way and the physical model studied by TDGB is qualita-
tively different from retroviral budding we study in this pa-
per. For regular enveloped viruses, viral capsids are fully
assembled inside the cell �8–11�. After that, they are trans-
ported to the cell membrane, bind to the viral spike proteins
�embedded in the cell membrane�, and then bud out through

FIG. 1. Electron microscopic images of partial budding of
HIV-1 viruses. �a� Reprinted from Ref. �2�, with permission by
Annual Reviews. Bar: 100 nm. �b� Reprinted from Ref. �4�, with
permission by Journal of Virology. Bar: 500 nm.
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the cell membrane �see Fig. 2�b��. Therefore, capsids forma-
tion and budding out of the membrane are two separate pro-
cesses. The main driving force of budding is the capsid-
membrane attraction �mediated by embedded spike proteins�.

Budding of retroviruses follows a completely different
pathway. Various transmission electron microscopy and
x-ray tomography experiments suggest that retroviral capsids
are assembled from Gag proteins on the cell membrane and
bud out of the cell concurrently �2,3�. Based on these experi-
ments, we study a different model for HIV �and retrovirus in
general� budding and assembly shown in Fig. 2�a�. In this
model, we assume retroviral capsids are assembled from
membrane-bound Gags only, neglecting the possibility that
Gags from the interior of the cell may participate. In other
words, the Gag-membrane attraction is strong such that Gags
always bind to the membrane. This assumption is supported
by various experimental observation where budding is com-
pletely inhibited �no capsids are formed� but Gags are found
in abundance at the cell membrane �12�. In contrast to the
TDGB model, the primary driving force of our retroviral
budding is the short-range attraction between these
membrane-bound Gag proteins. This correlates well with the
experimental fact that point mutations changing Gag-Gag in-
teractions affect the degree of viral budding. On the other
hand, spike proteins or virus RNA seem not important for
retroviral budding. In vitro, Gag proteins are directly at-
tracted to the membrane and they alone are usually sufficient
for the assembly and release of viruslike particles �3,13,14�.
We therefore neglect the contribution of all other proteins or
RNA components of retroviruses in our model.

In this paper, for a given set of parameters �the membrane
Gag concentration, the Gag-Gag interaction, and the cell
membrane bending and stretching rigidity�, we study the free
energy profile of budded viral capsids. Two energies are con-
sidered explicitly: First, the elastic energy of the membrane
including the bending and stretching energy; second, the
Gag-Gag attraction energy when a Gag makes contact to the
other Gag �see Fig. 2�a��. Since the elastic energy scale is
much larger than kBT, for example, the bending rigidity of

normal membranes is about 20kBT, thermal fluctuations of
the membrane are higher-order corrections and neglected in
the theoretical treatment. Focusing on the budding process,
we also assume that the Gag-Gag interaction is strong
enough such that the entropic cost of bringing free Gags to
the capsid can be ignored. For simplicity, we assume the
shape of the capsid together with the membrane attached to it
is �partially� spherical with radius R �Fig. 2�a��. The size of a
capsid is then characterized by the zenith angle � at its edge,
the smallest being the angle of a single Gag protein, �G �Fig.
2�a��. Since �G is very small ��G=0.03 for a typical HIV
capsid containing 5000 Gags�, we take �G→0 in the theo-
retical consideration and treat � as a continuous variable. As
budding proceeds to completion, � increases from �G to �.
When �=�, the capsid actually leaves the membrane
through membrane fission. In this paper, we do not consider
this fission process and thus, in our terminology, complete
budding always means �→�. To simplify the calculation,
we employ a scaling description where we neglect the varia-
tion in the degree of viral budding and assume all capsids
have the same average zenith angle �.

Our main result is shown in Fig. 3. The key parameter is
the strength of Gag-Gag attraction which can be adjusted
experimentally by mutating Gags, complexing Gags with
other molecules or by changing pH or salinity of the cell
cytoplasm near the membrane �2,15�. In a partially budded
capsid, the line tension � of the rim of a capsid is directly
proportional to this Gag-Gag interaction. When the Gag-Gag
attraction is strong �or when � is greater than a threshold
value �c�, as in the normal biological conditions of HIV, bud-
ding always proceeds to completion, i.e., �→� �the left-
hand panel of Fig. 3�. At the early stage of budding, the size
of a partially budded capsid increases very slowly with time,

��t� � �t/�diff�1/2, �1�

where the time scale �diff depends on the lateral mobility of
the Gag, the radius of the capsid and the initial concentration
Gag �see Eq. �51��. On the other hand, when the Gag-Gag
attraction is weak ����c�, for example, after mutation of the
late domains of the Gag protein, partial budding appears as a
metastable state at the capsid size �0 �the right-hand panel of
Fig. 3�. In this case, the free energy barrier can be much
larger than kBT and budding is kinetically trapped at �0. Us-
ing a linear approximation, we find

FIG. 2. �Color online� Schematic illustrations of two different
types of virus budding. �a� Budding of retroviruses. Capsid proteins
�Gags� are first attracted to the membrane, then self-assemble and
bud on the membrane at the same time. This is the system studied in
this paper. �b� Budding of regular enveloped viruses. Capsid pro-
teins first self-assemble into complete capsids inside the cell, then
bud on the membrane �5�. �a� Also shows the cylindrical coordinate
system �r ,h ,�� used in the model �the azimuthal angle � is not
shown�.
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FIG. 3. �Color online� The schematic illustration of the total free
energy density as a function of the capsid size �. The left- and
right-hand profiles correspond to strong or weak Gag-Gag attrac-
tion, respectively. Here � is the line tension of the rim of a partially
budded capsid. � is proportional to the strength of Gag-Gag attrac-
tion. �c is the threshold line tension at which the local minimum at
�0 appears.
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where � and � are the surface tension and bending rigidity of
the membrane.

The energetics of HIV budding and assembly is studied
both analytically and numerically in this paper. Analytically,
the complete scaling behaviors of the free energy density
profile in asymptotic limits of “soft” and “stiff” membranes
are calculated �the meaning of “soft” and “stiff” membrane
will be clear in the later sections�. In all cases, they agree
well with the numerical result. On the other hand, the nu-
merical result gives a complete solution to the problem in-
cluding nonlinear regimes where the analytical result is nor-
mally not available. The inequality �0�0.3� is found to
always hold from the numerical calculation without any ap-
proximations.

It is worth to point out that budding in our model can be
considered as a consequence of the inhomogeneity of the
membrane if one considers Gags as a part of the membrane.
In this sense, our work is related to the work of Jülicher and
Lipowsky on domain-induced budding of vesicles �16,17�.
However, in their papers, the inhomogeneity was introduced
through two kinds of lipids which do not carry a given cur-
vature like our Gags. Domain-induced budding is a conse-
quence of demixing of these different molecules. As a result,
their budding happens in a much larger length scale �compa-
rable to the size of the vesicle� where only two phases coex-
ist, one budded out from the other. While in our case, we
consider budding at a much smaller length scale �a typical
HIV-1 virus particle is about 140 nm in diameter, which is
100 times smaller than the size of a host cell� and there is a
multiphase coexistence in the system since there are more
than one capsid on the membrane.

This paper is organized as follows. In Sec. II, we intro-
duce the physical model of HIV budding and assembly. We
then discuss the analytical solution to the elastic energy of
the membrane in Sec. III and to the total free energy density
in Sec. IV. The numerical result is then provided and com-
pared to the analytical results in Sec. V. After we get the
complete theoretical result, we discuss budding kinetics and
make connections to experiments in Sec. VI. We finally con-
clude in Sec. VII. In this paper, the term “capsid” is used for
both partial and complete spherical shells of viral proteins.
The meaning should be clear from the context.

II. ELASTIC MODEL OF HIV CAPSID BUDDING
AND SELF-ASSEMBLY

Let us consider a membrane-capsid system in which the
concentration of Gags on the membrane, cG, is fixed. We
assume all capsids assembled by Gags have the same aver-
age zenith angle � �see Fig. 2�a��, and an average concentra-
tion, n. n is related to � by the conservation of mass of Gags,

n = cG
A��G�
A���

= cG
1 − cos �G

1 − cos �
, �3�

where

A��� = 2�R2�
0

�

sin 	d	 = 2�R2�1 − cos �� �4�

is the area of a capsid with zenith angle �, and �G is the
zenith angle of a single Gag �see Fig. 2�a��. Within this scal-
ing description, it is convenient to think that the whole mem-
brane surface is divided into identical cells, each contains a
single capsid. The average size of these approximately circu-
lar cells, d, is given by the condition

��d/2�2n = 1. �5�

Generically, the free energy density of the membrane-
capsid system can be written as

f = n
 = n�
m + 
c� , �6�

where 
 is the free energy of one membrane cell. It includes
two parts: The elastic energy of the membrane, 
m, and the
capsid energy 
c coming from the Gag-Gag interaction and
the Gag-membrane interaction.

To calculate the elastic energy of the cell membrane, we
use the standard Helfrich model �18,19� where 
m is the sum
of two contributions from the bending energy and the
stretching energy,


m =� dS	�

2
�2H − C0�2 + �GK
 +� dS� . �7�

Here the integration with the area element dS is taken over
the membrane surface. � and �G are the bending rigidity and
Gaussian bending rigidity, H and K are the mean and Gauss-
ian curvatures, and C0 is the spontaneous curvature of the
membrane surface. Using the Gauss-Bonnet theorem, one
can show that the total Gaussian curvature of the membrane
surface is proportional to the total area of capsids, even in the
generic case when �G takes different values for the mem-
brane attached to the capsid and the Gag-free membrane.
Since the Gag concentration cG in our system is fixed, this
term gives a constant in f and can be dropped from further
consideration �20�. For a given Gag concentration cG, under
our spherical capsid assumption, the shape and the total area
of all capsids are fixed. Therefore, the total elastic energy of
the membrane attached to capsids is also constant, and can
also be dropped from consideration. As a result, the
�-dependent contribution to 
m comes from the integration
over the Gag-free membrane surface only. In this region, we
take the spontaneous curvature to be C0=0, corresponding to
normal lipid bilayer membranes.

In consideration of the single capsid energy 
c, since cG is
constant, both the total Gag-membrane interaction energy
and the bulk part of the Gag-Gag interaction energy are con-
stant. The only �-dependent contribution to 
c comes from
the rim energy of the capsid, due to the fact that the coordi-
nation number of Gags on the rim is not as many as Gags
inside the capsid. Since the perimeter of the capsid rim with
zenith angle � is 2�R sin �, we set


c = �2�R sin � . �8�

The proportionality coefficient � can be considered as the
“line tension” of the capsid. It is directly proportional to the
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strength of the Gag-Gag attraction and can be changed ex-
perimentally by modification of Gags or by changing pH or
salinity of the cell cytoplasm near the membrane.

To proceed further, we take the “ideal capsids” approxi-
mation when the distance between capsids is large and the
membrane mediated interaction between them is negligible.
Such an effective long-range interaction is possible because
the presence of the first capsid may change the deformation
of the membrane around the second capsid and provides an
effective interacting energy between the two. Qualitatively,
this interaction is negligible when the capsid concentration n
is small �the quantitative condition will be given in the next
section�. Under this noninteracting capsids approximation,

m comes from the membrane deformation induced by a
single capsid.

The calculation procedure to find the free energy profile
f��� is as follows. We first minimize the membrane elastic
energy 
m with respect to all possible membrane shapes for
any given capsid size �. Here it is convenient to use a cylin-
drical coordinate system �r ,h ,�� as shown in Fig. 2�a� �the
azimuthal angle � is not shown�. With our assumption of
�partial� spherical capsids, the membrane profile is indepen-
dent on �. As a result, one can use either the function h�r� or
r�h� to parametrize the membrane. Correspondingly, the
mean curvature and the area element can be written as �21�

H�r� =
h��r�3 + h��r� + rh��r�

2r�1 + h��r�2�3/2 , �9�

dS = r�1 + h��r�2drd�; �10�

or

H�h� =
1 + r��h�2 − r�h�r��h�
2r�h��1 + r��h�2�3/2 , �11�

dS = r�h��1 + r��h�2dhd� , �12�

where h��r�=dh /dr and h��r�=d2h /dr2 are the first and sec-
ond derivatives of h with respect to r. Similarly, r��h�
=dr /dh and r��h�=d2r /dh2 are the first and second deriva-
tive of r with respect to h. Functionally minimizing the
membrane energy 
m with respect to membrane shape r�h� or
h�r�, one obtains an elastic equation of the membrane shape,
similar to the Euler-Lagrange equation derived from the least
action principle in the classical mechanics. For the shape
parametrization using r�h�, �
m /�r=0 leads to the equation

�

2r2�1 + r�2�9/2 �− r�2 − 3r�4 − 3r�6 − r�8 + rr� − 3rr�4r�

− 2rr�6r� + 2r2r�2 − 11r2r�2r�2 − 13r2r�4r�2 − 5r3r�3

+ 30r3r�2r�3 + 4r2r�r�3� + 8r2r�3r�3� + 4r2r�5r�3�

− 20r3r�r�r�3� − 20r3r�3r�r�3� + 2r3r�4� + 4r3r�2r�4�

+ 2r3r�4r�4�� + �
1 + r�2 − rr�

�1 + r�2�3/2 = 0, �13�

where r�3�=d3r /dh3 and r�4�=d4r /dh4 are the third and fourth
derivatives of r with respect to h. This equation must be

solved together with the boundary conditions. On the rim of
the partial spherical capsid, the membrane itself and its slope
must be continuous. We have

�h�r��R sin � = R cos �, �h��r��R sin � = − tan � , �14�

or

�r�h��R cos � = R sin �, �r��h��R cos � = − cot � . �15�

Far away from the capsid, the membrane becomes flat. We
have

�h��r��� = 0 �16�

or

�r��h��� = � . �17�

Solving the elastic equation �13� with the boundary con-
ditions, Eq. �15� and �17� �or Eq. �14� and Eq. �16� if h�r� is
used�, one obtains the membrane shape that minimizes 
m.
Substituting this shape into Eq. �7�, one obtains the minimal

m���. Setting its value into Eq. �6�, one gets the total free
energy density profile f���. In general, the elastic equation,
Eq. �13�, is highly nonlinear and numerical calculations are
needed to obtain the exact membrane profile, as shown in
Sec. V. However, in certain asymptotic limits, analytical so-
lutions can be obtained which determine the scaling behavior
of the system. This is done in the next two sections.

III. ASYMPTOTIC SOLUTIONS OF THE MEMBRANE
ELASTIC ENERGY

In calculating the free energy profile, the most nontrivial
part is to find the minimal 
m���, due to the nonlinear elastic
equation involved. After the solution is found, it is straight-
forward to add the other part of the energy 
c��� and obtain
f���. Therefore, we focus on the solution of minimal 
m in
this section. Although not solvable in general, the problem
does have analytical solutions in asymptotic limits. To a
large extent, they determine the analytical behavior of the
system, especially the scaling behavior of 
m with the dimen-
sionless parameter

�̃ = R��

�
, �18�

which characterize the relative strength of the surface tension
to the bending rigidity.

A. Small deformation solution

A typical approach to consider the elastic deformation of
the membrane is to take the small deformation approxima-
tion which assumes ��h�1 �22�. Here we use the notation

� = r̂�r + �̂
1

r
�� �19�

in order to show similarity of the elastic equation to the
linearized Poisson-Boltzmann equation later. Expanding with
�h and keeping terms of O��h�2 in �
m=0, we reach a lin-
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earized elastic equation which can be written as

H =
1

2
�2h ,

�2H −
H

rs
2 = 0, �20�

where we have introduced an important length scale in the
problem,

rs =��

�
. �21�

It is the length scale beyond which the stretching energy
becomes more important than the bending energy. Notice
that Eq. �20� takes exactly the same form as a linearized
Poisson-Boltzmann equation in electrolytes or plasma �23�.
Therefore, rs can be interpreted as an elastic screening
length, similar to the Debye-Hückel screening radius. The
local curvature H�r� induced by the capsid decreases when r
increases and becomes exponentially small at distance larger
than rs. This is a typical linear solution of small deformation.

Using boundary conditions Eqs. �14� and �16�, the special
solution to Eq. �20� is given by

h�r� = R cos � + rs tan �
K0�r/rs� − K0�R sin �/rs�

K1�R sin �/rs�
, �22�

h��r� = − tan �
K1�r/rs�

K1�R sin �/rs�
, �23�

H�r� =
tan �

2rs

K0�r/rs�
K1�R sin �/rs�

, �24�

where K0 and K1 are the zero- and first-order modified Bessel
function of the second kind. At r�rs, both K0�r /rs� and
K1�r /rs� decay like �rs /rexp�−r /rs�, and the deformation be-
comes exponentially small, as the meaning of rs suggested.

Substituting this solution back to Eq. �7�, we get the mini-
mal elastic energy of the membrane


m = �� tan2 �
R sin �

rs

K0�R sin �/rs�
K1�R sin �/rs�

. �25�

Notice that this energy is proportional to the dimensionless
parameter �̃=R�� /�=R /rs. Here, the inverse proportion to
rs is again a generic feature shared with the theory of Debye-
Hückel linear screening �23�.

The self-consistency of the small deformation approxima-
tion is warranted by �h��r���1, or, according to Eq. �23�,
�tan ���1. Therefore, this solution is applicable in the whole
range of r for ��� /4 capsids only. On the other hand, at
large distances far away enough from the capsid, the defor-
mation of the membrane always becomes small enough such
that the small deformation solution is applicable. In this
sense, this solution can always serve as a “far-capsid” solu-
tion for the membrane shape, although the formula for 
m in
Eq. �25� is not valid in general. It describes the universal
decaying behavior of the deformation when the deformation

itself becomes small enough. We can formally define a char-
acteristic distance rc through

�h��rc�� = 1, �26�

beyond which the small deformation solution is valid. rc will
be useful later when we discuss the complete solution to the
problem.

With the small deformation solution in hand, we are now
ready to derive a quantitative condition for the ideal capsid
approximation introduced in the last section. Clearly, when
the average projected distance between capsids, d0, is much
larger than rs+2R, the membrane mediated interaction be-
tween capsids is negligible, since the deformations of the
membrane by the capsids at distance larger than rs are
screened out. In this case, most of the membrane surface is
flat, so d0�d �notice that d is measured along the membrane
surface which in general is larger than d0 measured along r
axis�. Thus according to Eqs. �3� and �5�, the ideal capsids
approximation is valid when

d0

rs + 2R
=

2 sin��/2�
�rs + 2R���cG sin��G/2�

� 1. �27�

In this work, we assume cG is small enough and this is al-
ways the case. Using relevant parameters for HIV �see Sec.
VI for more details�, this approximation is valid when cG is
less than 0.1 nm−2.

B. Catenoid solution

When the surface tension �=0 or rs→�, again an ana-
lytical solution is available �24,25�. In this case, the second
integral in Eq. �7� is zero. Our problem of finding the mini-
mal 
m is reduced to a minimal surface problem in differen-
tial geometry �21�. Namely, we look for the solution to the
equation H=0 �26�. The only solution under the rotational
symmetry of our problem is the catenoid solution, first dis-
covered by Euler in 1740 �27�.

In this case, due to the possible multiple values of h at the
same r, it is better to use the r�h� parametrization. H is then
given by Eq. �11�. Using boundary conditions �15� and �17�,
the special solution to H=0 is

r�h� = R sin2 � � cosh
h − R cos � − R sin2 � arcsinh�cot ��

R sin2 �
.

�28�

The catenoid shapes near the capsids are illustrated in the
upper panels of Fig. 4. In this catenoid shape, the elastic
energy 
m achieves its absolute minimum, zero.

The catenoid solution is a solution to a nonlinear differ-
ential equation. It involves large deformations which cannot
be characterized by the linear solution discussed in the pre-
ceding subsection. Although exact only when rs→�, this
solution is still useful for large but finite rs �28�. In fact, since
there are no other length scales in the elastic equation �13� �R
only shows up in the boundary conditions�, a large rs actually
means rs�r. Therefore, in the region of rrs, the catenoid
solution should work asymptotically. In this sense, this solu-
tion can always serve as a “near-capsid” solution for the
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membrane shape, although 
m=0 is not true in general. The
characteristic length beyond which it fails is simply rs.

In the case of rs→� and �1, both the catenoid solution
and the small deformation solution work in all ranges of r.
Indeed they become identical.

C. Membrane elastic energy at two asymptotic limits

The two solutions discussed in the last two subsections
determine the analytical behavior of the system to a large
extent. They determine the scaling behavior of 
m with re-
spect of �̃. When �̃1, they can even be combined to get
the analytical expression of the minimal 
m. Below we sepa-
rate our discussion into two opposite limits of small and
large �̃, which can be called the soft membrane regime and
the stiff membrane regime. Here “soft” means easy to
stretch, “stiff” means the opposite. See Fig. 4 for a direct
illustration of the “soft” or “stiff” membranes.

In the soft membrane regime, �̃1 or Rrs, the catenoid
solution is valid near the capsid when rrs. Calculating rc
using Eqs. �28� and �26�, we obtain

rc = �2R sin2 � . �29�

We see rcrs. Therefore, the valid regions of the two
asymptotic solutions �one is r�rc, the other is r�rs� overlap
largely and we can combine them to get a complete solution
to the optimal membrane shape. Quantitatively, we artifi-
cially choose a projected distance somewhere between rc and
rs, say �rcrs. For r��rcrs, the catenoid solution is used. For
r��rcrs, the small deformation solution is used. Notice that
the special solution of the small deformation now must be
calculated using the continuity conditions for h�r� and h��r�
at �rcrs, derived from the catenoid solution. As a result, we
have an analytical expression for the optimal membrane
shape continuously from the edge of the capsid to infinity
�see the upper panels of Fig. 4 plotted using the numerical
result which agrees with the analytical calculation�. The cor-
responding 
m, keeping the leading order terms in the small
parameter �̃, is given by


m = �� sin4 �
R2

rs
2 ln

rs

R
. �30�

We see 
��̃2 ln�1 / �̃�. When �1, this result agrees with
the small deformation solution in Eq. �25� in the same re-
gime of small �̃.

In the stiff membrane regime, �̃�1 or R�rs. Since r
�rs always, the “near capsid” region where the catenoid
solution holds disappears. On the other hand, for ��� /4,
the small deformation solution is valid in the whole range of
r. The membrane elastic energy is given by �25�, which in
this limit reads as


m = �� tan2 � sin �
R

rs
. �31�

For ��� /4 capsids, a rough estimate of rc using Eq. �23�
gives

rc � R sin � + rs ln�tan �� . �32�

Since R�rs, for most of �, we expect that the small defor-
mation solution starts to work at places close to the capsid
�see the lower panels of Fig. 4 plotted using the numerical
result�. Probably because of this, the scaling behavior of

m��̃ is preserved even at large �, as shown by the numeri-
cal result �see Sec. V�.

IV. ANALYTICAL RESULT OF THE TOTAL FREE
ENERGY DENSITY

After the information about the minimal 
m��� is known,
we can add the line tension energy 
c��� to it and consider
the total free energy density f���. The presence of 
c intro-
duces the second dimensionless parameter to the problem,

�̃ =
R�

�
, �33�

which characterizes the relative strength of the line tension
on the capsid rim. In this section, we derive several simple
scaling behaviors of the system, depending on the two di-
mensionless parameters �̃ and �̃. We again separate our dis-
cussion into the soft and stiff membrane regimes correspond-
ing to small and large �̃.

A. Soft membrane regime

In the soft membrane regime, �̃=R /rs1. Substituting
Eqs. �8� and �30� to Eq. �6�, we have

f � �cG�1 − cos �G� f̃ = �cG�1 − cos �G�� cot
�

2

�	2�̃ + �̃2 ln
1

�̃
sin3 �
 , �34�

where we have introduced the dimensionless free energy

density f̃ for convenience. f̃��� is plotted schematically in
Fig. 3. When �̃ is large, the only minimum of the free energy
density is at �→� �the left-hand panel of Fig. 3�. On the
other hand, when �̃�0.2�̃2 ln�1 / �̃�, a local minimum at the

rc
r

h
rc

r

h

rc
r

h

rc
r

h

FIG. 4. �Color online� Numerical result of the optimal mem-
brane shape �dark gray, blue online� around a capsid �light gray, red
online�. The upper panels are plotted in the “soft membrane” re-
gime. �̃=0.1 or rs=10R. Here the membrane takes the catenoid
shape. The lower panels are plotted in the “stiff membrane” regime.
�̃=10 or rs=0.1R. The left-hand panels are plotted at �=0.25�.
The right-hand panels are plotted at �=0.75�. rc are shown for
comparison with corresponding rs.
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capsid size, �0, appears �the right-hand panel of Fig. 3�. Cor-
respondingly, the threshold line tension at which the local
minimum in the free energy density appears is

�c = 0.2R� ln
1

R��/�
. �35�

Since transcendental equations are involved in minimiza-

tion of f̃ , it is not easy to get the analytical expression about
this local minimum in general. However, �0 and the corre-

sponding f̃0 can be estimated in a linear approximation. As-

suming �0 is achieved at small �, we can expand f̃ and keep
only the leading order terms in �. We obtain

f̃ =
4��̃

�
+ 2��̃2 ln

1

�̃
�3. �36�

Taking �f /��=0, we have

�0 =
153� �̃

�̃2 ln�1/�̃�
=

153� �

R� ln���/�/R�
. �37�

The fact that this is a minimum rather than a maximum is

confirmed by ��2 f̃ /��2��0
�0. For ���c at which �0 shows

up, this result is indeed much smaller than 1, consistent with
the initial assumption that �01. In the same limit,

f̃0 � 4�
43��̃2�̃2 ln�1/�̃� = 4�

R

�

153��2� ln
��/�

R
. �38�

B. Stiff membrane regime

In this case, we do not know the form of the membrane
elastic energy 
m for large �. Still, in the same spirit of linear
analysis, we can assume that there is a minimum of f at
small �, and use the small deformation solution Eq. �31� for

m. Notice that the minimum found in this way is only a
local minimum, since we did not include the information of
large �.

As a result, we have

f̃ = � cot
�

2
�2�̃ + �̃ tan2 �� �

4��̃

�
+ 2��̃� . �39�

Taking �f /��=0, we obtain

�0 =�2�̃

�̃
=�4 4�2

��
. �40�

It is a minimum since ��2 f̃ /��2��0
�0. For this result to be

meaningful, �̃�̃ must hold, which will be checked in com-
parison with the numerical result. The corresponding free
energy density is

f̃0 = 4��2�̃�̃ = 4�R�4 4��2

�3 . �41�

V. NUMERICAL RESULT AND DISCUSSION

In order to verify our analytical understanding and get the
complete solution to the problem, we solve the nonlinear

elastic equation derived from �
m=0 numerically. Our com-
putation procedure follows Refs. �7,29�. This numerical so-
lution is then combined with 
c to give the total free energy
density f . In this section, we show the numerical result, com-
pare it with the analytical formulas, and discuss the meaning
of our results.

The direct numerical result of 
m is plotted in Fig. 5,
where for convenience we used the dimensionless elastic en-
ergy 
̃m=
m /�. The first important thing to notice is that the
elastic energy profile always takes a “sand dune” shape,
where two minimums, zeros, are achieved at �→0,�, and a
maximum shows up in the middle of �. Physically, this en-
ergy profile comes from the need of matching boundary con-
ditions at the edge of the capsid and at infinity. The mem-
brane deformed by the capsid edge at one end must become
flat far away from the capsid. At �→0 and �→�, the mem-
brane is not deformed at all, and the elastic energy is zero
�30�. While for � close to � /2, the membrane is almost
vertical at the edge of the capsid, and a large amount of
elastic energy is needed to bend it flat.

Second, we see clearly two kinds of asymptotic behaviors
of 
m depending on the parameter �̃=R /rs. In the stiff mem-
brane regime, �̃�1, the energy is proportional to �̃ as shown
by the collapse of the data points to a single curve with �̃
varying from 102 to 105. The maximum of the energy is
achieved at �m�0.7�. �m is a nonlinear result and cannot be
calculated analytically. However, the proportionality of 
m to
�̃ is a small deformation result as shown in Eq. �31�. In the
soft membrane regime, �̃1, the energy is proportional to
�̃2 ln�1 / �̃�, shown again by the collapse of the data points
with �̃ varying from 10−2 to 10−5. Here the collapse is not as
pronouncing as in the other regime mostly due to the larger
numerical error in dealing with smaller 
̃m. The absolute
value of 
̃m in this regime is smaller at least in four orders of
magnitude than in the other regime. The maximum of the
energy here is arrived at �m=� /2 and the curve becomes
symmetric about �m. These features agree with our small �̃
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FIG. 5. �Color online� Numerical result of the dimensionless
membrane elastic energy 
̃m=
m /� as a function of �. The 11 sets
of data points are at �̃=10−5 ,10−4 ,10−3 , . . . ,105. They are labeled
correspondingly as −5,−4,−3, . . . ,5. The right axis 
̃m / �̃ is for all
�̃�1 data points �light gray, red online�, while the left axis

̃m / �̃2 ln�1 / �̃� is for all �̃�1 data points �dark gray, blue online�,
as indicated by the two arrows. The curve represents the analytical
asymptotic solution �30� with an additional factor 1.3 �dark gray,
blue online�, fitting the data points for �̃1.

MODEL OF HUMAN IMMUNODEFICIENCY VIRUS BUDDING … PHYSICAL REVIEW E 78, 051903 �2008�

051903-7



solution originating from the catenoid solution. In fact, Eq.
�30� fits the numerical data reasonably well, with an addi-
tional factor 1.3. The qualitative difference between the soft
and stiff membrane regimes can also be seen directly from
the optimal membrane shape minimizing the membrane elas-
tic energy around a capsid with a given size �, as shown in
Fig. 4.

The scaling of 
m with �̃ suggests a simple way to do the
numerical calculation to the free energy density. When �̃
�1,

f̃ = 
̃c + 
̃m = 2� cot
�

2
�̃ + g1����̃ = �̃	2� cot

�

2

�̃

�̃
+ g1���
 ,

�42�

where 
̃c=
c /� and g1��� is some function given by the
numerical computation. According to the last equality, up to

an overall constant �̃, f̃ is completely determined by only
one parameter �̃ / �̃. Similarly, when �̃1,

f̃ = �̃2 ln
1

�̃
	2� cot

�

2

�̃

�̃2 ln�1/�̃�
+ g2���
 , �43�

where g2��� is again given by numerical computation, al-
though we know it from our analytical result in Eq. �34�. In

this regime, f̃ is determined by one parameter �̃ / �̃2 ln�1 / �̃�.
Below in studying the local minimum of f̃ , we therefore
consider a single parameter dependence.

For all �̃ and �̃, we get two different types of free energy
density profiles as shown in Fig. 3, consistent with the ana-
lytical result for small �̃. The global minimum of the free
energy density is always at �→�. Physically, the line ten-
sion energy prefers the shortest length of the capsid rim,
which is zero for complete capsids ��→��. When �̃ is very
large, the line tension energy dominates, and the free energy

density f̃ decreases with � monotonically to zero, as shown
in the left-hand panel of Fig. 3. On the other hand, when �̃ is
small, due to the maximum of the membrane elastic energy

m, a local minimum at the capsid size, �0, shows up in the
free energy density, as shown in the right-hand panel of Fig.
3. It is useful to draw a “phase diagram” on the plane of �̃
and �̃ as in Fig. 6 to show this qualitative difference in the
free energy density profile. The lower-right-hand region of
Fig. 6 corresponds to value of the parameters ��̃ , �̃� where
capsid budding can be kinetically trapped. The two lines fit
the “phase boundary” at large and small �̃ with �̃=0.11�̃ and
�̃=0.065�̃2 ln�1 /��, respectively. As one can see, there is a
very good agreement between numerical results and our scal-
ing formulas for �̃ in two asymptotic limits. According to the
numerical fits, the threshold � at which the local minimum in
the free energy density shows up are

�c = 0.11��� �44�

when �̃�1, and

�c = 0.065R� ln
1

R��/�
�45�

when �̃1. The later formula agrees with our analytical
result in Eq. �35� with a numerical factor 3 difference.

The possible local minimum in f̃ �the right-hand panel in
Fig. 3� suggests that budding may be trapped kinetically at
the capsid size �0. Numerical and analytical results of �0 are
shown in Fig. 7. The analytical curves are drawn using Eq.
�40� at �̃�1 and Eq. �37� at �̃1, with additional numerical
factors of 2 and 1.5, respectively. There is some deviation
between analytical and numerical results at large �̃. This is
the parameter regime where the linear approximation is no
longer valid.

The kinetic trapping becomes significant if the barrier in
the free energy density is large. In Fig. 8, numerical and
analytical results about this barrier are plotted. For the local

minimum f̃0, up to an order of one numerical factor �1.7 and
3.2�, our analytical expressions Eq. �41� at ��1 and Eq.
�38� at �1 remains a reasonable approximation. We cannot

estimate the maximum f̃m, which is in the nonlinear regime.
However, in the most important regime of small �̃ and large

barrier, Fig. 8 shows that the main contribution to f̃m comes

from the membrane elastic energy 
m �the value of f̃m at �̃

=0�. In this regime, the additional contribution to f̃m from the

line tension energy 
c is negligible and f̃m is almost a con-

stant. Combining the numerical result of f̃m and the analyti-

cal result of f̃0 with proper numerical factors, we obtain the
asymptotic formulas for the barrier at �̃1,

f̃m − f̃0 � 7.8�̃ − 6.8��2�̃�̃

= 7.8R��

�
− 6.8�R�4 4��2

�3 ��̃ � 1� , �46�
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FIG. 6. �Color online� An effective “phase diagram” in the plane
of two dimensionless parameters, �̃=R /rs and �̃=R� /�. In the
upper-left-hand part, the free energy density decreases monotoni-
cally with �, while in the lower-right-hand part, it has a local mini-
mum, as shown in the insets. The numerical data points mark the
“phase boundary” at which the local minimum appears. The dotted-
dashed line and the solid lines fit the data points using �̃=0.11�̃ and
�̃=0.065�̃2 ln�1 / �̃�, respectively.
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f̃m − f̃0 � 4.4�̃2 ln�1/�̃� − 12.8��3 �̃2�̃2 ln�1/�̃�

= 4.4R2�

�
ln

��/�
R

− 12.8�
R

�
�3 �2� ln

��/�
R

��̃

 1� . �47�

The largest barriers are achieved at �̃=0 or f̃0=0.

VI. KINETICS OF HIV BUDDING AND PARTIAL BUDDING

As discussed in the preceding sections, with a finite Gag-
Gag attraction, budding always proceeds to completion ther-
modynamically. However, when this attraction is weak, or �
is small, a metastable state of partial budding appears at a
smaller capsid size �0 �see Fig. 3�. It is therefore possible
that the budding process is kinetically trapped at �0. In this
section, we discuss this kinetic effect and make connections
of our theory to experiments.

Let us first estimate the values of parameters. A
normal plasma membrane has ��20–40kBT and �

�0.5–2 pN /nm=0.12–0.48kBT /nm2 �31�. On the other
hand, typical HIV have R�60–80 nm �1�. Consequently,
�̃=R�� /��10 and only the stiff membrane regime with �̃
�1 is relevant for HIV. In this section, we therefore focus on
the stiff membrane regime only. �In the opposite regime of
�̃1, the elastic energy scale is given by 
m��̃2 ln�1 / �̃�,
which may be comparable with kBT and become unimpor-
tant.�

In order to see if budding can be kinetically trapped at the
local minimum �0 �see Fig. 3�, we must study the budding
kinetics and calculate the kinetic barrier. For this purpose, let
us employ the standard kinetic picture of the first-order phase
transition �32,33�, corresponding to the transition from a
free-Gags phase to an aggregated Gags phase where Gags
self-assemble into complete viral capsids. At the initial stage
of aggregation, the concentration of free Gags is large, Gags
coagulate to form dimers. Dimers coagulate with free Gags
or other dimers to form larger Gag clusters �small capsids�.
This initial coagulation or nucleation is a fast process and is
not a rate limiting step in retroviral budding. Soon free Gags
are significantly depleted, and the main kinetic pathway for
growth of capsids is for them to diffuse and merge with each
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FIG. 7. �Color online� The capsid size �0 as a free energy
local minimum is shown as a function of �̃ / �̃ and �̃ / �̃2 ln�1 / �̃�
at two limits of �̃. The dots are numerical results taken at
�̃=102 ,103 ,104 ,105 for the upper panel and �̃
=10−2 ,10−3 ,10−4 ,10−5 for the lower panel. The curves are analyti-
cal results of Eq. �40� at �̃�1 and Eq. �37� at �̃1 with additional
numerical factors of 2 and 1.5, respectively. The range of �̃ plotted
corresponds to the lower-right-hand “phase” in the “phase diagram”
of Fig. 6.
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�1 and Eq. �38� at �1 with additional numerical factor 1.7 and

3.2, respectively. The squares �green� are the numerical result of f̃m,
marked by the dashed lines �green� at their zero �̃ values. The

triangles �red� are numerical result of the barriers, f̃m− f̃0, fitted by
the dotted-dashed lines �red� using Eqs. �46� and �47�.
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other. We will be concerned with this later stage of coagula-
tion. For simplicity, we work with the dominant capsid size,
��t� �with concentration n�t��, assuming these typical capsids
carry all the mass of membrane-bound Gag proteins.

Let us start with the case when ��t� is still small so that
the energy barrier for merging of capsids is smaller than kBT.
This is the regime of the well-known diffusion-limited ag-
gregation �34�. The rate of the capsid area A�� , t� incretion is
proportional to the probability that two capsids diffuse and
merge with each other. The kinetic rate equation reads as

dA��,t�
dt

= �2�R sin ��t�A��,t�D � n�t��R sin �, �48�

where D�kBT ln�L /R sin ��t�� /�b is the lateral diffusion
constant of a capsid on the membrane �35�, L and b are the
size and the thickness of the membrane. The ��n�t��R sin � is
the gradient of the concentration n�t� on the edge of the
capsid. This gradient can be estimated assuming a steady
state in the diffusion and taking the adsorbing boundary con-
dition at the edge of the capsid and a given capsid concen-
tration �Eq. �3�� far away from the capsid. Solving the diffu-
sion equation with these boundary conditions, we find

� � n�t��R sin � =
cGA��G�

A���R sin � ln�L/R sin ��
. �49�

Substituting these relations and Eq. �4� into Eq. �48�, we
obtain

cos ��t� = cos �G −
t

�diff
, �50�

where

�diff = R2�b/kBTcGA��G� �51�

is the time scale of diffusion proportional to the viscosity �
of the membrane. In the small � regime corresponding to a
small kinetic barrier, this equation can be written as

��t� = �2t/�diff + �G
2 �1/2, �52�

which is a slow function of time.
The regime of diffusion-limited growth stops when the

kinetic barrier between approaching partial capsid is much
larger than kBT. At a later time, a different growth regime of
Lifshitz-Slezov �LS� comes into play �32�. In this mecha-
nism, the growth is no longer due to collision and merging of
partially budded capsids. Instead, smaller capsids shrink and
release individual Gags. These Gags are absorbed into larger
capsids, leading to their growth. This process of releasing
and adsorbing of individual Gags �the so-called coalescence�
has much smaller kinetic barrier than the barrier to capsid
merging in this later stage. The growth of capsid size in the
LS regime is the same as that of diffusion-limited growth
�32�. However, the rate constant �LS depends exponentially
on the activation energy to release individual Gag proteins
from a capsid

�LS � exp�− ���/kBT� , �53�

where � is the binding energy of the Gag in a capsid, which
itself is also a function of the Gag-Gag interaction.

The kinetic picture described above is good when ���c
and the free energy density decreases monotonically with
increasing � �the left-hand panel of Fig. 3�. However, when
���c and a local minimum �0 appears in the free energy
density �the right-hand panel of Fig. 3�, the above picture
must be modified. For the cluster growth, either in the
diffusion-limited regime or in the LS regime, the growth of
the cluster size always reduces the free energy of the system.
On the other hand, for the capsid growth of retroviral bud-
ding, after the capsid size reaches �0, the system free energy
increases when the capsids grow further. For ���0, the
growth of capsids is determined by the ability to overcome
the kinetic barrier related to fm− f0 �see Fig. 3�. The detailed
analysis of the rate of capsid growth for ���0 is a very
interesting problem by itself, requiring understanding of
membrane energetics when a partially budded capsid absorbs
other capsids or many individual Gags to increase its size
from �0 to �m. These calculations are beyond the scope of
this paper and we will leave the detail treament of capsid
growth in this case to a future study. Nevertheless, one can
expect the rate of such process to be inversely proportional
to the exponential of the energy barrier

�m � exp�− �fm − f0�/nkBT� , �54�

where �fm− f0� /n is the energy barrier of a membrane cell
with a single capsid in it. According to Eqs. �46� �see also the
upper panel of Fig. 8�, the maximum energy barrier is
achieved at f0=0 or �̃=0. Using Eqs. �3� and �34�, it can be
written as

Em =
fm

n
= ��1 − cos �m� f̃m, �55�

where f̃m is given by Eqs. �46�, and �m is the corresponding
capsid size. A more useful expression of Em can be obtained
if one recognizes that Em is nothing but the maximum of 
m
shown in Fig. 5. Using the numerical result of that figure, we
obtain

Em = 11.5��̃ = 11.5R��� . �56�

Clearly, Em�kBT for �̃�1. For example, for R=70 nm, �
=0.24kBT /nm2 and �=20kBT, we obtain Em=1765kBT. The
true energy barrier is smaller than Em since �̃�0. In the
regime of small �̃, according to Eq. �46�, it is

E � ��1 − cos �m�� f̃m − f̃0� = Em	1 − 3.9� �̃

�̃



= Em	1 − 3.9�4 �2

��

 . �57�

In experiments, for normal plasma membranes with given
� and �, according to Eq. �56�, the larger the retrovirus size
R, the larger the kinetic barrier. On the other hand, the line
tension � is directly proportional to the strength of the Gag-
Gag attraction and is experimentally adjustable through mu-
tation of the late domain on the Gag protein, binding of other
molecules to Gags or changing the pH, salinity of water
solution near the membrane �2,15�. As we know, the closest
approach distance between two Gag proteins is about 10 nm

RUI ZHANG AND TOAN T. NGUYEN PHYSICAL REVIEW E 78, 051903 �2008�

051903-10



�1�. Taking a rough estimate for the Gag-Gag pair interaction
energy as 10kBT �see Sec. V of Ref. �36� for details�, and
assuming Gags are densely packed on the capsid, one obtains
��1kBT /nm�4 pN for normal retroviral capsids. Theoreti-
cally, in order to have a local minimum in the free energy
density and trap retrovirus budding kinetically, we must have
���c �see Fig. 3�. For a normal cell membrane with �
=20kBT and �=0.24kBT /nm2, using Eq. �44�, �c
�0.24kBT /nm=1 pN. Therefore, for normal capsids, ���c,
and budding easily proceeds to completion �see the left-hand
panel of Fig. 3�. On the other hand, � is larger than �c only by
a factor of 4. Therefore, HIV budding can be fairly easily
trapped at a partially budded state with capsid size �0 by
reducing the Gag-Gag interaction strength such as mutation
of a single domain on the Gag protein. The kinetic barrier E
that appeared at �=�0 can be much larger than kBT, and the
time scale for capsid growth beyond �0, �m, is exponentially
large. Qualitatively, this trend is consistent with experiments
on mutation of the late domain of Gag proteins �2,3�. Nu-
merically, we know that �0�0.9�0.3� �see the upper panel
of Fig. 7�. It agrees with experiments reasonably well.

It is worth to point out that some practical factors in ret-
rovirus budding and assembly have been neglected in our
simple model, such as local variation in membrane elasticity
due to raft structures which seem preferred by retroviruses
budding �37�, or the presence of other proteins in in-vivo
assembly and budding �2�. Therefore one cannot expect our
model to explain everything. On the other hand, more con-
trolled experiments are needed to verify the dependence on
the membrane rigidities and Gag-Gag attraction of �0 given
by Eq. �40�.

VII. CONCLUSION

In this paper, we developed a model of HIV �and retrovi-
ruses in general� budding and self-assembly on the elastic
membrane. We studied the free energy profile of the system
as a function of the capsid size �. We showed that although
always thermodynamically favorable, complete budding and
assembly may not be achieved, due to the presence of a
metastable state at the capsid size �0 if the Gag-Gag attrac-

tion is weak. In practice, for normal biological conditions,
the Gag-Gag attraction is strong enough and HIV budding
and assembly always proceed to completion, as it should be.
On the other hand, it is fairly easy to trap HIV budding to a
partially budded state at �0 by reducing the Gag-Gag attrac-
tion. This can be done through the mutation of late domain
on the Gag protein or binding of other molecules to Gag, or
by increasing the membrane rigidities, although this may not
be easy to do in-vivo. Our theory agrees reasonably well
with experimental results. However, experiments with better
controlled environments are needed to verify various aspects
of the theory.

The most interesting point of our model is probably that it
provides a unique self-assembly mechanism. Not like self-
assembly of other viruses or colloids, HIV assemble and bud
concurrently on the membrane. Therefore, the membrane
elastic energy plays an important role in the assembly pro-
cess. For example, the kinetic barrier which traps the HIV
budding essentially comes from the membrane elastic en-
ergy. In fact, our model developed for HIV budding and
assembly can be very well applied to other situations. For
example, for a given concentration of membrane-bounded
proteins with a fixed spontaneous curvature, this kind of bud-
ding and assembly phenomenon should also exist and can be
explained using our model. In this situation, it may be easier
to change the membrane properties and protein-protein at-
traction in vitro to verify our theory more quantitatively. Due
to the interplay between the membrane elastic energy and the
Gag-Gag attraction energy, the kinetics of retrovirus budding
is an interesting problem by itself, and will be addressed in
more details in the near future. In this paper, we limit our
consideration to the case of low Gag concentration, cG, and
assume that capsids do not interact. Future work will con-
sider higher Gag concentration �cG�0.1 nm−2� where
capsid-capsid interaction can be important.

ACKNOWLEDGMENTS

We wish to thank G. Bel, J. Mueller, B. I. Shklovskii, and
T. A. Witten for useful discussions. T.T.N. acknowledges the
junior faculty support from the Georgia Institute of Technol-
ogy.

�1� J. M. Coffin, S. H. Hughes, and H. E. Varmus, Retroviruses,
1st ed. �Cold Spring Harbor Laboratory Press, New York,
1997�.

�2� E. Morita and W. I. Sundquist, Annu. Rev. Cell Dev. Biol. 20,
395 �2004�.

�3� D. G. Demirov and E. O. Freed, Virus Res. 106, 87 �2004�.
�4� E. Gottwein, S. Jäger, A. Habermann, and H.-G. Krässlich, J.

Virol. 80, 6267 �2006�.
�5� S. Tzlil, M. Deserno, W. M. Gelbart, and A. Ben-Shaul, Bio-

phys. J. 86, 2037 �2004�.
�6� M. Deserno and T. Bickel, Europhys. Lett. 62, 767 �2003�.
�7� M. Deserno, Phys. Rev. E 69, 031903 �2004�.
�8� A. Zlotnick, J. Mol. Biol. 366, 14 �2007�.

�9� M. F. Hagan and D. Chandler, Biophys. J. 91, 42 �2006�.
�10� T. Hu and B. I. Shklovskii, Phys. Rev. E 75, 051901 �2007�.
�11� S. D. Hicks and C. L. Henley, Phys. Rev. E 74, 031912

�2006�.
�12� J. E. Dooher, B. L. Schneider, J. C. Reed, and J. R. Lingappa,

Traffic �Oxford, U. K.� 8, 195 �2007�.
�13� H. Garoff, R. Hewson, and D.-J. E. Opstelten, Microbiol. Mol.

Biol. Rev. 62, 1171 �1998�.
�14� S. Welsch, B. Müller, and H. Kraüsslich, FEBS Lett. 581,

2089 �2007�.
�15� S. Campbell, R. J. Fisher, E. M. Towler, S. Fox, H. J. Issaq, T.

Wolfe, L. R. Phillips, and A. Rein, Proc. Natl. Acad. Sci.
U.S.A. 98, 10875 �2001�.

MODEL OF HUMAN IMMUNODEFICIENCY VIRUS BUDDING … PHYSICAL REVIEW E 78, 051903 �2008�

051903-11



�16� F. Jülicher and R. Lipowsky, Phys. Rev. Lett. 70, 2964 �1993�.
�17� F. Jülicher and R. Lipowsky, Phys. Rev. E 53, 2670 �1996�.
�18� P. Canham, J. Theor. Biol. 26, 61 �1970�.
�19� W. Helfrich, Z. Naturforsch. C 28C, 693 �1973�.
�20� In Ref. �17�, the Gaussian curvature term is important since the

area of the budding region is not fixed.
�21� Kreyszig, Differential Geometry �Dover, New York, 1991�.
�22� Expansion in the opposite limit ��h��1 gives a nonlinear dif-

ferential equation which cannot be solved analytically.
�23� L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1,

3rd ed. �Butterworth Heinemann, Oxford, 1980�.
�24� In the opposite limit of �=0, although �
m=0 still has a

catenoid solution, it is only a stationary solution but does not
correspond to an energy minimum. Actually 
m can be arbi-
trarily close to zero but not equal to zero, given a membrane
shape arbitrarily close to the flat membrane and only deformed
a little bit at the capsid rim. This result is different from the
minimal surface of revolution problem in the calculus of varia-
tion �25�. This is essentially due to the fact that our boundary
condition requires the membrane to be flat at infinity, but there
is no confinement to its position there.

�25� B. van Brunt, The Calculus of Variations �Springer, New York,
2004�.

�26� Since all energies we considered are positive definite, H=0
corresponds to an absolute minimum for 
m. One can of course
still use �
m=0 to obtain an elastic equation. It is much more
complicated than H=0 and the catenoid solution indeed holds.

�27� F. Morgan, Riemannian Geometry: A Beginner’s Guide, 1st ed.

�Jones and Bartlett, Boston, London, 1993�.
�28� The first-order correction to this solution for large but finite rs

also involves a nonlinear differential equation and cannot be
solved analytically.

�29� U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A 44, 1182
�1991�.

�30� Intuitively, one may think that at � close to �, the “neck” of
the membrane �see the lower-right-hand panel of Fig. 4 for an
illustration of the neck� cost a large elastic energy. In fact, this
is not the case. In the soft membrane regime, the bending
energy dominates. This neck can take a catenoid shape which
has zero curvature energy. In the stiff membrane regime, the
stretching energy dominates. The membrane can make a sharp
turn to minimize the stretching energy again to almost zero.

�31� C. E. Morris and U. Homann, J. Membr. Biol. 179, 79 �2001�.
�32� E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics

�Butterworth-Heinemann, Oxford, 1997�.
�33� T. T. Nguyen and B. I. Shklovskii, Phys. Rev. E 65, 031409

�2002�.
�34� D. F. Evans and H. Wennerström, The Colloidal Domain:

Where Physics, Chemistry, Biology, and Technology Meet, 2nd
ed. �Wiley-VCH, New York, 1999�.

�35� P. G. Saffman and M. Delbrück, Proc. Natl. Acad. Sci. U.S.A.
72, 3111 �1975�.

�36� T. T. Nguyen, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev.
E 72, 051923 �2005�.

�37� N. Chazal and D. Gerlier, Microbiol. Mol. Biol. Rev. 67, 226
�2003�.

RUI ZHANG AND TOAN T. NGUYEN PHYSICAL REVIEW E 78, 051903 �2008�

051903-12


